Home
Search results “Bonds in atoms”
Atomic Hook-Ups - Types of Chemical Bonds: Crash Course Chemistry #22
 
09:46
Atoms are a lot like us - we call their relationships "bonds," and there are many different types. Each kind of atomic relationship requires a different type of energy, but they all do best when they settle into the lowest stress situation possible. The nature of the bond between atoms is related to the distance between them and, like people, it also depends on how positive or negative they are. Unlike with human relationships, we can analyze exactly what makes chemical relationships work, and that's what this episode is all about. If you are paying attention, you will learn that chemical bonds form in order to minimize the energy difference between two atoms or ions; that those chemical bonds may be covalent if atoms share electrons, and that covalent bonds can share those electrons evenly or unevenly; that bonds can also be ionic if the electrons are transferred instead of shared: and how to calculate the energy transferred in an ionic bond using Coulomb's Law. -- Table of Contents Bonds Minimize Energy 01:38 Covalent Bonds 03:18 Ionic Bonds 05:37 Coulomb's Law 05:51 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 1591592 CrashCourse
Ionic, covalent, and metallic bonds | Chemical bonds | Chemistry | Khan Academy
 
13:22
Introduction to ionic, covalent, polar covalent and metallic bonds. Watch the next lesson: https://www.khanacademy.org/science/chemistry/chemical-bonds/types-chemical-bonds/v/electronegativity-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Missed the previous lesson? https://www.khanacademy.org/science/chemistry/periodic-table/periodic-table-trends-bonding/v/metallic-nature-trends?utm_source=YT&utm_medium=Desc&utm_campaign=chemistry Chemistry on Khan Academy: Did you know that everything is made out of chemicals? Chemistry is the study of matter: its composition, properties, and reactivity. This material roughly covers a first-year high school or college course, and a good understanding of algebra is helpful. About Khan Academy: Khan Academy is a nonprofit with a mission to provide a free, world-class education for anyone, anywhere. We believe learners of all ages should have unlimited access to free educational content they can master at their own pace. We use intelligent software, deep data analytics and intuitive user interfaces to help students and teachers around the world. Our resources cover preschool through early college education, including math, biology, chemistry, physics, economics, finance, history, grammar and more. We offer free personalized SAT test prep in partnership with the test developer, the College Board. Khan Academy has been translated into dozens of languages, and 100 million people use our platform worldwide every year. For more information, visit www.khanacademy.org, join us on Facebook or follow us on Twitter at @khanacademy. And remember, you can learn anything. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to Khan Academy’s Chemistry channel: https://www.youtube.com/channel/UCyEot66LrwWFEMONvrIBh3A?sub_confirmation=1 Subscribe to Khan Academy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 2225041 Khan Academy
Covalent Bonding | #aumsum #kids #education #science #learn
 
06:11
Covalent Bonding. Noble gases have complete outer electron shells, which make them stable. The coming together and sharing of electron pairs leads to the formation of a chemical bond known as a covalent bond. Two chlorine atoms come together and share their electrons to form a molecule of chlorine. In this way, each atom will have eight electrons in its valence shell. As a single pair of electrons is shared between them, the bond is known as a single covalent bond. A single covalent bond is represented by a single dash between the atoms. When two oxygen atoms come together, they each share 2 electrons to complete their octets. Since they share two pairs of electrons, there is a double bond between the oxygen atoms. Similarly, Nitrogen atoms share a triple covalent bond to form a molecule of Nitrogen.
Views: 1225022 It's AumSum Time
How atoms bond - George Zaidan and Charles Morton
 
03:34
View full lesson: http://ed.ted.com/lessons/how-atoms-bond-george-zaidan-and-charles-morton Atoms can (and do) bond constantly; it's how they form molecules. Sometimes, in an atomic tug-of-war, one atom pulls electrons from another, forming an ionic bond. Atoms can also play nicely and share electrons in a covalent bond. From simple oxygen to complex human chromosome 13, George Zaidan and Charles Morton break down the humble chemical bond. Lesson by George Zaidan and Charles Morton, animation by Bevan Lynch.
Views: 373082 TED-Ed
Why Do Atoms Bond?
 
02:24
SciShow explains what makes atoms bond (and what makes them sometimes seem promiscuous). Hosted by: Michael Aranda ---------- Like SciShow? Want to help support us, and also get things to put on your walls, cover your torso and hold your liquids? Check out our awesome products over at DFTBA Records: http://dftba.com/scishow Or help support us by subscribing to our page on Subbable: https://subbable.com/scishow ---------- Looking for SciShow elsewhere on the internet? Facebook: http://www.facebook.com/scishow Twitter: http://www.twitter.com/scishow Tumblr: http://scishow.tumblr.com Thanks Tank Tumblr: http://thankstank.tumblr.com Sources:
Views: 379042 SciShow
Ionic Bonding Introduction
 
07:20
To see all my Chemistry videos, check out http://socratic.org/chemistry This video is an introduction to ionic bonding, which is one type of chemical bonding. Ionic bonds hold together metal and nonmetal atoms. In ionic bonding, electrons are transferred from a metal atom to a nonmetal atom, creating ions. These ions have opposite charge, so they stick together. Creative Commons Attribution-NonCommercial CC BY-NC
Views: 949698 Tyler DeWitt
Bond Length and Bond Energy
 
06:42
052 - Bond Length and Bond Energy In this video Paul Andersen explains how the bond length and bond energy are calculated using an energy distance graph. The strength of the bond is determined by the charges in the constituent atoms. As the charge increases the bond energy increases and the bond length decreases. Increasing numbers of bonds will also increase the energy and decrease the length. Do you speak another language? Help me translate my videos: http://www.bozemanscience.com/translations/ Music Attribution Title: String Theory Artist: Herman Jolly http://sunsetvalley.bandcamp.com/track/string-theory All of the images are licensed under creative commons and public domain licensing: Cdang. Deutsch: Prinzip Des Laue-Verfahrens: Ein Einfallender Monochromatischer Röntgenstrahl Trifft Auf Ein Einkristall, Wird an Diesem in Bestimmte Richtungen Gebeugt Und Erzeugt Auf Der Dahinter Liegenden Fotoplatte Ein Beugungsmuster, March 30, 2009. Own work. http://commons.wikimedia.org/wiki/File:Cliche_de_laue_principe.svg. "File:Ethane-A-3D-balls.png." Wikipedia, the Free Encyclopedia. Accessed December 15, 2013. http://en.wikipedia.org/wiki/File:Ethane-A-3D-balls.png. "File:Hexamethylbenzene-3D-balls.png." Wikipedia, the Free Encyclopedia. Accessed December 15, 2013. http://en.wikipedia.org/wiki/File:Hexamethylbenzene-3D-balls.png.
Views: 136133 Bozeman Science
Chemical Bonding - Ionic vs. Covalent Bonds
 
02:15
This two minute animation describes the Octet Rule and explains the difference between ionic and covalent bonds. Find more free tutorials, videos and readings for the science classroom at ricochetscience.com
Views: 210498 RicochetScience
Ionic and Covalent Bonds, Hydrogen Bonds, van der Waals - 4 types of Chemical Bonds in Biology
 
08:50
There are four types of chemical bonds essential for life to exist: Ionic Bonds, Covalent Bonds, Hydrogen Bonds, and van der Waals interactions. We need all of these different kinds of bonds to play various roles in biochemical interactions. These bonds vary in their strengths. In Chemistry, we think of Ionic Bonds and Covalent bonds as having an overlapping range of strengths. But remember, in biochemistry, everything is happening in the context of water. This means Ionic bonds tend to dissociate in water. Thus, we will think of these bonds in the following order (strongest to weakest): Covalent, Ionic, Hydrogen, and van der Waals. Also note that in Chemistry, the weakest bonds are more commonly referred to as “dispersion forces.” Related Chemistry video: Ionic Bonds vs Covalent Bonds http://bit.ly/2cUG6C8 Our series on Biology is aimed at the first-year college level, including pre-med students. These videos should also be helpful for students in challenging high school biology courses. Perfect for preparing for the AP Biology exam or the Biology SAT. Also appropriate for advanced homeschoolers. You can also follow along if you are just curious, and would like to know more about this fascinating subject. ***** Our current biology textbook recommendation is Campbell Biology from Pearson. 10th edition Amazon Link: http://amzn.to/2mahQTi 11th edition Amazon Link: http://amzn.to/2m7xU6w Amazon Used Textbooks - Save up to 90% http://amzn.to/2pllk4B For lighter reading, we recommend: I Contain Multitudes: The Microbes Within Us and a Grander View of Life by Ed Yong http://amzn.to/2pLOddQ Lab Girl by Hope Jahren http://amzn.to/2oMolPg ***** This video was made possible by the generous donations of our Patrons on Patreon. We dedicate this video to our VIP Patron, Vishal Shah. We’re so thankful for your support! ***** Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! If you'd like to support more great educational videos from Socratica, please consider becoming our Patron on Patreon! https://www.patreon.com/socratica ***** Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time, accepting a position at an exclusive prep school, where she taught biology and chemistry for eight years. She is now the head writer and producer of Socratica Studios. ****** Creative Commons Picture Credits: Salt crystals https://en.wikipedia.org/wiki/File:Halit-Kristalle.jpg Author: W.J. Pilsak Hydrogen Bonding in water https://en.wikipedia.org/wiki/File:3D_model_hydrogen_bonds_in_water.svg Author: Qwerter Products in this video: Preparing for the Biology AP* Exam (School Edition) (Pearson Education Test Prep) - http://amzn.to/2qJVbxm Cracking the AP Biology Exam, 2017 Edition: Proven Techniques to Help You Score a 5 (College Test Preparation) - http://amzn.to/2qB3NsZ Cracking the SAT Biology E/M Subject Test, 15th Edition (College Test Preparation) - http://amzn.to/2qJIfHN
Views: 29698 Socratica
Hybridization of Atomic Orbitals, Sigma and Pi Bonds, Sp Sp2 Sp3, Organic Chemistry, Bonding
 
36:31
This organic chemistry video tutorial explains the hybridization of atomic orbitals. It discusses how to determine the number of sigma and pi bonds in a molecule as well determining if a carbon is sp, sp2, or sp3 hybridized. This video contains plenty of examples and practice problems. Valence Bond Theory: https://www.youtube.com/watch?v=4UP4LhDhoUE Molecular Orbital Theory: https://www.youtube.com/watch?v=P21OjJ9lDcs Orbitals, Atomic Energy Levels, & Sublevels Explained! https://www.youtube.com/watch?v=4sLXUr2HWIs How To Receive Tutoring and Get Paid At The Same Time: https://www.youtube.com/watch?v=J8A8JTpOWCQ Epic Music Mix: https://www.youtube.com/watch?v=qeljbZhx9bY Excel For Beginners: https://www.youtube.com/watch?v=nK-uNYuvcag Here is a list of topics: 1. Atomic Orbitals - S, px, py, and pz orbitals 2. Hybrid Orbitals vs Unhybridized Orbitals 3. Sp, Sp2, and SP3 hybridized Orbitals 4. S character vs P Character 5. Bond Strength of Single Bonds, Double Bonds, and Triple Bonds 6. Bond Length of Triple Bonds and Single Bonds 7. Sigma Bonds vs Pi Bonds 8. More Examples on Structure and Bonding 9. Electron Configuration of Carbon and Valence Bond Theory 10. Electron Configuration of Hybrid Orbitals - sp sp2 and sp3 11. dsp3 and d2sp3 hybridization 12. Hybridization of Lone pairs - Localized vs Delocalized Electrons 13. Hybridization of Lone pairs in resonance structures 14. Sigma and Pi Bonds In Single, Double, and Triple Bonds 15. Sigma Bonds and Overlap of Atomic Orbitals 16. Mixing Atomic Orbitals to form Hybrid Orbitals 17. Unhybridized P orbitals and pi bonding 18. Structure of Ethane With Hybrid Orbitals 19 Ethene or Ethylene Hybridization and Atomic Orbitals 20. Molecular Orbital Theory 21. Structure & Bonding of Ethyne or Acetylene - sigma and pi bonds 22. valence bond theory
Ionic and covalent bonding animation
 
01:58
Ionic bonding formed when one atom has sufficient strength of attraction to remove ion from the other atom. Covalent bonding occurs when neither atom has sufficient strength to remove the other atom's electron. They would instead share electrons to form stable configurations of electrons.
Views: 1212100 kosasihiskandarsjah
Atoms Bonding Song
 
04:07
Here is a song I created for my 6th grade science students. I hope you enjoy Oh, oh, oh, oh, oh, Oh sometimes atoms are bonding, yeah It gets the properties that it never, never, never, never had before, no no Atoms are bonding, yeah Oh sometimes atoms are bonding, yeah It gets the properties that it never, never, never, never had before, no no Atoms are bonding, yeah Stable atoms, electrons don't leave, outer shell complete Lose one, gain one if it's an unstable one , yes then Most atoms have many shells, hey When it's full begins a new one 2, 8, 18, 32, shell numbers Electron configuration How many electrons you want? Yeah, covalent, it's sharing The covalent bond Molecules formed, elements and compounds Sometimes the atoms share more electrons Share two with partners, a double bond Covalent bonds strong, attraction's not Molecules spread from heating break apart These substances boy, low melting point But giant molecules hold on real strong Oh sometimes atoms are bonding, yeah It gets the properties that it never, never, never, never had before, no no Atoms are bonding, yeah Oh sometimes atoms are bonding, yeah It gets the properties that it never, never, never, never had before, no no Atoms are bonding... Ionic bond gained or lost one It's got power electrical charges Not equal positive charged protons Or negative charged electrons these "Ions" If it's positive, it's a cation Lost electrons yes, this atom is But this one has gained is negative Anion has more electrons than protons Ionic bonds are formed When cations and anions come together now Attracted to each other ionic compound Made of metal also non-metals These compounds not separate molecules See them gathered in ionic lattice High boiling points, high melting points Weak forces molecular lattices Oh sometimes atoms are bonding, yeah It gets the properties that it never, never, never, never had before, no no Atoms are bonding, yeah Oh sometimes atoms are bonding, yeah It gets the properties that it never, never, never, never had before, no no Atoms are bonding... Metallic bonding, metallic bonding Types of bonding metallic elements Cling together, metallic lattice Gotta see the regular arrangement Metal cations with free electrons You know they're traveling by them Atoms clinging, they're clinging Free electrons allow them sticking Oh sometimes atoms are bonding, yeah It gets the properties that it never, never, never, never had before, no no Atoms are bonding, yeah Oh sometimes atoms are bonding, yeah It gets the properties that it never, never, never, never had before, no no Atoms are bonding Sometimes atoms are bonding
Views: 109152 ParrMr
Atomic Bonding Song
 
04:49
Starring: Christie Wykes as Chlorine, Carbon, and Sodium Director of Photography: Sean McCallum Gravity (John Mayer Cover) http://www.youtube.com/watch?v=u7KpH9_I2Dw I'm Atoms (Jason Mraz Cover) http://www.youtube.com/watch?v=DBjZz0iQrzI Electricity (Jet Cover) http://www.youtube.com/watch?v=cY-kiddvAg0 Experiments A Cappella http://www.youtube.com/watch?v=lRbI_vPyOnc
Views: 475837 Veritasium
Valence Bond Theory, Hybrid Orbitals, and Molecular Orbital Theory
 
07:54
Alright, let's be real. Nobody understands molecular orbitals when they first take chemistry. You just pretend you do, and then in your next course you learn them a little better. And then a little better than that. And five years later you sort of understand them. So don't get discouraged! Just watch this for a head start and do your best. Subscribe: http://bit.ly/ProfDaveSubscribe [email protected] http://patreon.com/ProfessorDaveExplains http://professordaveexplains.com http://facebook.com/ProfessorDaveExpl... http://twitter.com/DaveExplains General Chemistry Tutorials: http://bit.ly/ProfDaveGenChem Organic Chemistry Tutorials: http://bit.ly/ProfDaveOrgChem Biochemistry Tutorials: http://bit.ly/ProfDaveBiochem Classical Physics Tutorials: http://bit.ly/ProfDavePhysics1 Modern Physics Tutorials: http://bit.ly/ProfDavePhysics2 Mathematics Tutorials: http://bit.ly/ProfDaveMaths Biology Tutorials: http://bit.ly/ProfDaveBio American History Tutorials: http://bit.ly/ProfDaveAmericanHistory
Views: 466771 Professor Dave Explains
Dogs Teaching Chemistry - Chemical Bonds
 
01:50
I am a chemist and my greatest hobby is to train my dogs...why not combine the two?! Paige's facebook- http://www.facebook.com/PaigetheBorderCollie Dexter's facebook - http://www.facebook.com/theDexterDog Contact us! [email protected] Music: "East Side Bar" by Josh Woodward - http://www.joshwoodward.com/ .................................................................................................. Chemical bonds are what hold atoms together. A chemical bond is an attraction between atoms that allows the formation of chemical substances. The electrons that participate in chemical bonds are the valence electrons, which are the electrons found in an atom's outermost shell. An ionic bond is formed when one of the atoms will lose its electron to the other atom. This results in a positively charged ion, called an cation. and negatively charged ion, called an anion. Positive and negative attract! The result is ionic bond. Covalent chemical bonds involve the sharing of a pair of valence electrons by two atoms There are also what is called Polar Covalent Bonds. These are Covalent bonds in which the sharing of the electron pair is unequal. The result is a bond where the electron pair is displaced toward the more electronegative atom.
Views: 1211387 snuggliepuppy
Orbitals: Crash Course Chemistry #25
 
10:52
In this episode of Crash Course Chemistry, Hank discusses what Molecules actually look like and why, some quantum-mechanical three dimensional wave functions are explored, he touches on hybridization, and delves into sigma and pi bonds. -- Table of Contents Molecules: Clumpy Globs... 0:18 Quantum-Mechanical Three-Dimensional Wave Functions 3:06 S & P Orbital Hybridization 5:27 Sigma & Pi Bonds 7:32 Hybridized Orbitals 5:52 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 1684352 CrashCourse
Chemical Bonds: Covalent vs. Ionic
 
08:57
Mr. Andersen shows you how to determine if a bond is nonpolar covalent, polar covalent, or ionc. Intro Music Atribution Title: I4dsong_loop_main.wav Artist: CosmicD Link to sound: http://www.freesound.org/people/CosmicD/sounds/72556/ Creative Commons Atribution License
Views: 600033 Bozeman Science
Bonds Do NOT Have Energy!
 
04:46
Chemists will tell you that bonds contain energy. In an episode of SciShow Talk Show (link below), Derek from Veritasium says atoms are bonded because they LOSE energy. Derek is definitely closer to the truth, but we take it a step further in this video. SciShow Talk Show episode: http://youtu.be/AAmqeHCFq_8 ________________________________ VIDEO ANNOTATIONS What EXACTLY is Temperature? http://youtu.be/2xaIQjmE5VI Basic FAQs about Black Holes: http://youtu.be/ACCeFVeT984 Why Are Some Things Transparent? http://youtu.be/wDu0KMdDD1I ________________________________ SCIENCE ASYLUM STUFF Support us on Patreon: http://www.patreon.com/ScienceAsylum Advanced Theoretical Physics (eBook): https://gumroad.com/l/ubSc Merchandise: http://scienceasylum.spreadshirt.com/ More videos at: http://www.youtube.com/TheScienceAsylum Facebook: http://www.facebook.com/ScienceAsylum Twitter: @nicklucid http://twitter.com/nicklucid Instagram: @nicklucid https://instagram.com/nicklucid/ Tumblr: http://nicklucid.tumblr.com/ Google+: http://www.google.com/+Scienceasylum Main Site: http://www.scienceasylum.com/ Vlog: http://www.youtube.com/TheNickLucid ________________________________ COOL LINKS & SOURCES Frame of Essence's video response: http://youtu.be/XEM9TWNcX0M Crash Course video on Cellular Respiration: http://youtu.be/00jbG_cfGuQ UC David ChemWiki: http://chemwiki.ucdavis.edu/Biological_Chemistry/Biochemical_Energy/ATP%2F%2FADP Hyperphysics: http://hyperphysics.phy-astr.gsu.edu/hbase/chemical/bond.html http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/boneng.html http://hyperphysics.phy-astr.gsu.edu/hbase/organic/sugar.html http://hyperphysics.phy-astr.gsu.edu/hbase/mechanics/gravpe.html http://hyperphysics.phy-astr.gsu.edu/hbase/gpot.html http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elepe.html Wikipedia: https://en.wikipedia.org/wiki/Glucose https://en.wikipedia.org/wiki/Cellular_respiration https://en.wikipedia.org/wiki/Adenosine_triphosphate https://en.wikipedia.org/wiki/Adenosine_diphosphate https://en.wikipedia.org/wiki/Phosphate https://en.wikipedia.org/wiki/Chemical_bond https://en.wikipedia.org/wiki/Binding_energy https://en.wikipedia.org/wiki/Gibbs_free_energy ________________________________ IMAGE CREDITS Logo designed by: Ben Sharef Stock Photos and Clipart - Wikimedia Commons http://commons.wikimedia.org/wiki/Main_Page - Openclipart http://openclipart.org/ - or I made them myself... Molecules in Thumbnail: https://commons.wikimedia.org/wiki/File:Beta-D-glucose-3D-vdW.png https://commons.wikimedia.org/wiki/File:Beta-D-glucose-3D-balls.png M&Ms in Thumbnail: https://commons.wikimedia.org/wiki/File:Plain-M%26Ms-Pile.jpg Animated Fire GIFs: http://forum.terasology.org/threads/512x-new-animated-tiles-fire-and-portal-30frames.802/
Views: 31445 The Science Asylum
Covalent vs. Ionic bonds
 
12:23
This quick video explains: 1) How to determine the number of protons, neutrons, and electrons that an atom will comtain. 2) The characteristics of covalent bonds 3) The characteristics of ionic bonds Teachers: You can purchase this PowerPoint from my online store for only $3. The link below will take you to the store. https://www.teacherspayteachers.com/Product/Covalent-vs-Ionic-Bonds-PowerPoint-2340207 - Atom - Element - Proton - Neutron - Electron - Atomic number - Atomic mass - Covalent - Ionic - O2 - Salt - Sodium chloride
Views: 325463 Beverly Biology
Chemical Bonding Introduction: Hydrogen Molecule, Covalent Bond & Noble Gases
 
07:21
Chemical bonding introduction video shows how covalent bond means 2 hydrogen atoms can stick together to form a hydrogen molecule, H2. The video also explains why helium cannot form bonds and hence is called a noble gas. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript: Let's do a thought experiment. Imagine a box filled with hydrogen atoms. Like billiard balls on a pool table, atoms actually move, and they do it in straight lines until they hit something … like another hydrogen atom. Oh! See that? They stuck together. They’re not separate hydrogen atoms any more, but a pair of hydrogen atoms moving together. There goes another pair. 4.1 When atoms join up like this, scientists call it a molecule. And they call the join between them a chemical bond. Here comes another hydrogen atom crashing into the hydrogen molecule. But this time it doesn’t stick. Instead it just bounces off. Hydrogen atoms bond once, and that’s it. They’re just like that. Pretty quickly all the hydrogen atoms will collide and pair off into molecules. They will keep hitting each other, but they'll just bounce off. Scientists like to have a shorthand way of writing this molecule thingi. Here’s one way to show it, with the hydrogen symbols joined by a stick to show the chemical bond between the atoms. Another way is to write H2, with the little 2 after the H and a bit lower. A number written this way is called a subscript. What do you think the 2 stands for? It counts the number of hydrogen atoms in the molecule. Easy, heh! So when we have a balloon filled with hydrogen gas, it really contains trillions of trillions of H2 molecules. Let's do another thought experiment. We'll go back to our box filled with hydrogen atoms, but this time put an oxygen atom in there too. When a hydrogen atom crashes into an oxygen atom, they stick together. But wait, when another hydrogen atom hits, it also sticks to the oxygen. What about a third hydrogen atom? No, that’s if for oxygen. It can only make 2 bonds and then it’s done.
Views: 119951 AtomicSchool
Oxygen, Nitrogen & Carbon and Covalent Chemical Bonds
 
17:51
This chemistry tutorial video explains how oxygen, nitrogen & carbon make covalent chemical bonds to school & science students . The video shows how the protons and electron shells, and especially the number of electrons in the outer shells determine how many bonds oxygen, nitrogen and carbon can make. Four important molecules, water H2O, ammonia NH3, and methane CH4 are discussed. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript:
Views: 123085 AtomicSchool
Polar Covalent Bonds
 
04:58
Polar covalent bonds result from eneven sharing of electrons. Learn how to predict if a bond will be polar or nonpolar in this video.
Views: 137937 The Science Classroom
Chemistry: Ionic Bonds vs Covalent Bonds (Which is STRONGER?)
 
05:36
Chemistry: Ionic Bonds vs Covalent Bonds (which is stronger?) Ionic Bonds and Covalent bonds are both considered STRONG intramolecular forces. But do you know which is stronger? You'd think this was a straightforward question. But there's more to it! Each of these bonds has a range of strengths. In this video, we'll discuss how the strength of Ionic Bonds and Covalent bonds are measured so you can compare two chemical bonds. You can click on the links below to jump to sections in the lesson: 0:25 Definitions of ionic and covalent bonds 1:45 Measuring the strength of ionic bonds (lattice energy) 3:08 Some typical lattice energies of ionic bonds 3:50 Measuring the strength of covalent bonds (bond enthalpy) 4:19 Some typical bond enthalpies of covalent bonds Here are our more in-depth videos about the individual bonds. Ionic Bonds: http://bit.ly/1UWsJRL Covalent Bonds: http://bit.ly/1HYZmow3 Metallic Bonds: http://bit.ly/1UoASiZ Intermolecular Forces: http://bit.ly/2xAnoMt ///////////////////////// Our Periodic Table app is FREE in the Google Play store! http://goo.gl/yg9mAF Don't miss our other chemistry videos: https://www.youtube.com/watch?v=aQw9G... Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! ///////////////////////// To support more videos from Socratica, visit Socratica Patreon https://www.patreon.com/socratica http://bit.ly/29gJAyg Socratica Paypal https://www.paypal.me/socratica We also accept Bitcoin! :) Our address is: 1EttYyGwJmpy9bLY2UcmEqMJuBfaZ1HdG9 ///////////////////////// We recommend the following books: Brown and LeMay Chemistry: The Central Science 13th edition: http://amzn.to/2n5SXtB 14th edition: http://amzn.to/2mHk79f McGraw/Hill Chemistry by Chang & Goldsby http://amzn.to/2mO2khf Uncle Tungsten: Memories of a Chemical Boyhood by Oliver Sacks http://amzn.to/2nlaJp0 Napoleon's Buttons: How 17 Molecules Changed History http://amzn.to/2lJZzO3 ///////////////////////// Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time. Kimberly taught AP Biology and Chemistry at an exclusive prep school for eight years. She is now the head writer and producer of Socratica Studios. Creative Commons Picture Credits: Butter http://en.wikipedia.org/wiki/File:Western-pack-butter.jpg Author: Steve Karg, aka Skarg sodium chloride 3D lattice http://en.wikipedia.org/wiki/File:NaC... Author: Raj6
Views: 39622 Socratica
Sigma and Pi Bonds: Hybridization Explained!
 
08:03
Sigma bonds are the FIRST bonds to be made between two atoms. They are made from hybridized orbitals. Pi bonds are the SECOND and THIRD bonds to be made. They are made from leftover "p" orbitals. Check me out: http://www.chemistnate.com
Views: 1219132 chemistNATE
Atomic Bonds - Chemistry Basics Part II
 
13:52
Atoms forming bonds - why they do it, how they do it and what happens when they do it. Ionic bonds, non-polar covalent bonds, polar covalent bonds and hydrogen bonds. Atoms getting happy, that's what it's all about. Want more? Subscribe: http://www.youtube.com/user/ThePenguinProf FB Page: https://www.facebook.com/ThePenguinProf Twitter: https://twitter.com/penguinprof Web: http://www.penguinprof.com/
Views: 181949 ThePenguinProf
Polar & Non-Polar Molecules: Crash Course Chemistry #23
 
10:46
*** PLEASE WATCH WITH ANNOTATIONS ON! SOME INACCURACIES IN GRAPHICS ARE NOTED AND CORRECTED IN ANNOTATIONS. THANKS! *** Molecules come in infinite varieties, so in order to help the complicated chemical world make a little more sense, we classify and categorize them. One of the most important of those classifications is whether a molecule is polar or non-polar, which describes a kind of symmetry - not just of the molecule, but of the charge. In this edition of Crash Course Chemistry, Hank comes out for Team Polar, and describes why these molecules are so interesting to him. You'll learn that molecules need to have both charge asymmetry and geometric asymmetry to be polar, and that charge asymmetry is caused by a difference in electronegativities. You'll also learn how to notate a dipole moment (or charge separation) of a molecule, the physical mechanism behind like dissolves like, and why water is so dang good at fostering life on Earth. -- Table of Contents Charge Assymetry & Geometric Asymmetry 01:33 Difference in Electronegatives 01:49 Hank is Team Polar 00:33 Dipole Moment 03:49 Charge Separation of a Molecule 04:12 Like Dissolves Like 04:41 Water is Awesome 05:10 -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support CrashCourse on Subbable: http://subbable.com/crashcourse
Views: 2182202 CrashCourse
Polar Covalent Bonds and Nonpolar Covalent bonds, Ionic Bonding - Types of Chemical Bonds
 
12:14
This chemistry video tutorial provides a basic introduction into the types of chemical bonds such as polar covalent bonds, nonpolar covalent bonds and ionic bonds. It discusses the difference between ionic bonding and covalent bonding. Ionic bonds can be identified by looking for a metal combined with a nonmetal. Covalent bonds typically occur among 2 or more nonmetals. Covalent bonding involves a sharing of electrons and ionic bonding forms as a result of a transfer of electrons from the metal to the nonmetal producing ions with opposite charge which are attracted to each other. The electrostatic force of attraction produces the ionic bond that holds the cations and anions together. Polar covalent bonds have unequal sharing of electrons between the atoms where as nonpolar covalent bonding have a relatively equal sharing of electrons between the atoms attached to the bond. Polar covalent bonds typically have an electronegativity difference of 0.5 or more where as nonpolar covalent bonds have a value difference of 0.4 or less. This video contains plenty of examples and practice problems. New Chemistry Video Playlist: https://www.youtube.com/watch?v=bka20Q9TN6M&t=25s&list=PL0o_zxa4K1BWziAvOKdqsMFSB_MyyLAqS&index=1 Access to Premium Videos: https://www.patreon.com/MathScienceTutor Facebook: https://www.facebook.com/MathScienceTutoring/
How Covalent Bonds Form
 
06:41
A description of how carbon and hydrogen share electrons to form a covalently bonded compound.
Views: 10642 BioBunn
Double and Triple  Covalent Bonds
 
02:52
Learn how electrons are formed in a double and triple bond.
Views: 29771 The Science Classroom
Covalent Bonding
 
07:01
019 - Covalent Bonding In this video Paul Andersen explains how covalent bonds form between atoms that are sharing electrons. Atoms that have the same electronegativity create nonpolar covalent bonds. The bond energy and bond length can be determined by graphing the potential energy versus the distance between atoms. Atoms that share electrons unequally form nonpolar covalent bonds. Music Attribution Title: String Theory Artist: Herman Jolly http://sunsetvalley.bandcamp.com/track/string-theory All of the images are licensed under creative commons and public domain licensing: "Electronegativities of the Elements (data Page)." Wikipedia, the Free Encyclopedia, August 10, 2013. http://en.wikipedia.org/w/index.php?title=Electronegativities_of_the_elements_(data_page)&oldid=565034286. "File:Covalent Bond Hydrogen.svg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Covalent_bond_hydrogen.svg. "File:Halit-Kristalle.jpg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Halit-Kristalle.jpg. "File:Hydrogen-chloride-3D-vdW.png." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Hydrogen-chloride-3D-vdW.png. "File:Magnesium Crystals.jpg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Magnesium_crystals.jpg. "File:Methane-3D-space-filling.svg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Methane-3D-space-filling.svg. "File:Nitrogen-3D-vdW.png." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Nitrogen-3D-vdW.png. "File:Oxygen Molecule.png." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Oxygen_molecule.png. "File:Periodic Trends.svg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Periodic_trends.svg. "File:Periodic Trends.svg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Periodic_trends.svg. "File:Sugar 2xmacro.jpg." Wikipedia, the Free Encyclopedia. Accessed August 12, 2013. http://en.wikipedia.org/wiki/File:Sugar_2xmacro.jpg.
Views: 184846 Bozeman Science
What are Ionic Bonds?  | The Chemistry Journey | The Fuse School
 
02:55
In this video you'll learn the basics about Ionic Bonds. At Fuse School, teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. Our OER are available free of charge to anyone. Make sure to subscribe - we are going to create 3000 more! The Fuse School is currently running the Chemistry Journey project - a Chemistry Education project by The Fuse School sponsored by Fuse. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Be sure to follow our social media for the latest videos and information! Twitter: https://twitter.com/fuseschool Facebook: https://www.facebook.com/fuseschool Google+: http://www.gplus.to/FuseSchool Youtube: http://www.youtube.com/virtualschooluk Email: [email protected] Website: www.fuseschool.org This video is distributed under a Creative Commons License: Attribution-NonCommercial-NoDerivs CC BY-NC-ND
Carbon and its Compounds | Bonding in Carbon | Covalent Bonds
 
05:32
CBSE Class 10 Science - Carbon and its Compounds - What is covalent bonding and why Carbon shares electrons? What are Electrovalent and Covalent compounds and difference between them? Atoms can share, gain or Loose electrons to stable their Octates. So the compounds formed by gain or loss of electrons is called as the electrovalent compound and covalent compounds are formed by sharing of electrons. Carbon has an atomic number of 6 and its electronic configuration will be 2 and 4. So to be stale carbon has to either loss 4 electrons or gain 4 electrons. So the carbon shares the electrons with other atoms. So Covalent bonding is mutual sharing of electrons so as to achieve a stable electronic configuration. Hence carbon has co-valency of 4 and will be tetravalent. About PrepOngo: Best Online Learning App which provides CBSE class 10 interactive video lectures, NCERT solutions, written study material, solved examples, in chapter quizzes and practice problems for Science (Physics, Chemistry, Biology) and Mathematics. We try to help the students understand lessons by visualising the concepts through illustrative and interactive videos, practice from large question banks and evaluate and improve yourself continuously. Online Live courses are also offered for CBSE boards, JEE Mains, JEE-Advanced, NEET and Board preparation for class 10, 11 and 12 For all CBSE class 10 Science and Maths video lectures download the Android App: https://goo.gl/HJwkhw Subscribe to our YouTube Channel: https://goo.gl/KSsWP2
Views: 20460 PrepOnGo
How Does Water Bond - Covalent Bonds | Chemistry for All | FuseSchool
 
02:40
Learn the basics about the covalent bonding of water, when learning about covalent bonding within properties of matter. Water is made from one oxygen atom and two hydrogens. The oxygen has 6 electrons in its outer shell, but it really wants to have 8 to have a full shell. The hydrogens have one outer shell electron, but want to have two. The atoms share their electrons, forming covalent bonds. So all three atoms have full outer shells, and create a water molecule. Water has two covalent bonds. In water, the bonding electrons spend most of their time nearer the oxygen atom, because it is more ELECTRONEGATIVE. This means that it is electron withdrawing. As the negatively charged electrons are nearer the oxygen atom, the oxygen atom becomes a little bit negative itself, while the hydrogens become a little positive. This is called delta positive and delta negative. Water doesn’t just have any old covalent bonds; it has what we call POLAR COVALENT bonds and is a POLAR molecule. This is really important as it affects how water behaves and reacts with other elements. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Ionic Bonds, Polar Covalent Bonds, and Nonpolar Covalent Bonds
 
11:00
This organic chemistry video tutorial explains how to identify a bond as an ionic bond, polar covalent bond, or a nonpolar covalent bond. Ionic bonds usually consist of metals and nonmetals where as covalent bonds consists of nonmetals. In a nonpolar covalent bond, electrons are shared equally and the electronegativity difference between the two atoms is 0.4 or less. For polar covalent bonds, the electrons are shared unequally between the two atoms and the electronegativity difference is defined to be 0.5 or more. Subscribe: https://www.youtube.com/channel/UCEWpbFLzoYGPfuWUMFPSaoA?sub_confirmation=1 Access to Premium Videos: https://www.patreon.com/MathScienceTutor https://www.facebook.com/MathScienceTutoring/ New Organic Chemistry Playlist https://www.youtube.com/watch?v=6unef5Hz6SU&index=1&list=PL0o_zxa4K1BXP7TUO7656wg0uF1xYnwgm&t=0s
The CHEMICAL BONDS Song  - NOW WITH CLOSED CAPTION SO YOU CAN SING ALONG!  Mr. Edmonds  -
 
03:33
This song is about the formation of the two types of chemical bonds: IONIC BONDS and COVALENT BONDS. The tune is to "Dancing Queen" by Abba (the song from their album, Arrival). After looking for several song melodies, this one fit the words the best. Many thanks to my current and former science students for their encouragement! Document with words is in "Docs" section for dsecms on Teachertube, OR BELOW: The Chemical Bonds Song -- to the tune of "Dancing Queen" by Abba from the album Arrival. Words by Doug Edmonds. Oooh yeah, Ionic bonds ... covalent bonds ... both of them chemical bonds. How are they made? What's the dif-ference? Watch you'll see! First we'll start with ionic bonds, A metal and nonmetal are involved. The metal gives over electrons, the nonmetal ... it receives. The atoms become IONS! Metals might have 1,2 or 3 Electrons for the nonmetal to receive It all depends on what's needed, to make the number 8 For the nonmetals' outer shell. AND IF IT HAPPENS FOR THEM ... They both become IONS ...... CHARGED ATOMS .... They become IONS! The metal's positive, the nonmetal's negative, They become IONS, oh yeah. The metal's plus, the nonmetal minus, and opposites they do attract. So what you get, when they come together, is an IONIC BOND. So what about those covalent bonds? It's not about loss and gain of electrons. Valence electrons they are shared, to complete the outer shells Of the nonmetals set to bond. IT'S WHEN NONMETALS JOIN ... to make covalent bonds With shared electrons ,,,, they're covalent bonds. Not a transfer, instead they share valence electrons, oh yeah! Ionic bonds ... covalent bonds ... both of them chemical bonds. How are they made? What's the dif-ference? Play the song again ! Ionic bonds, covalent bonds ..... both chemical bonds!
Views: 200676 dsecms
Chemical Bonds In The Body - Types Of Chemical Bonds - What Are Ionic Bonds And Covalent Bonds
 
04:18
In this video we discuss how chemical bonds are formed, we cover ionic bonds and covalent bonds. Chemical bonding is important in many different functions of the body. Transcript and notes The interactions of 2 or more atoms mainly occur at the outermost shell, or energy level. The result of these interactions results in a chemical reaction. In atoms that have fewer or more than 8 electrons in their outermost energy level, reactions occur that result in the loss, gain, or sharing of electrons with another atom to satisfy the octet rule. The octet rule means that elements tend to combine so that each atom has 8 electrons in its outermost shell. This results in the formation of structures such as crystals or molecules. Two atoms of oxygen can combine with one atom of carbon to form carbon dioxide or CO2. There are two main types of chemical bonds, ionic bonds and covalent bonds. Ionic bonds are bonds where the transfer of electrons takes place. Let’s see how this type of bond works. So, here we have a sodium atom, which has an atomic number of 11, meaning it has 11 protons in its nucleus and 11 electrons in its shells or energy levels. Shell one has 2 electrons, shell 2 has 8 electrons and shell 3 has 1 electron. And here we have a chlorine atom, which has an atomic number of 17, so 17 protons and 17 electrons. It has 2 electrons in shell one, 8 in shell 2 and 7 in shell 3. We know that atoms want to have 8 electrons in their outer shell, so Sodium can give up one electron, and now it has 8 electrons in its outer shell, and chlorine can take that electron from sodium and that will give it 8 electrons in its outer shell. Since the sodium atom gave up an electron it now has 11 protons, which are positively charged, and 10 electrons which are negatively charged. This results in the formation of a sodium ion with a positive charge. An ion is an atom or molecule with a net electrical charge due to the loss or gain of an electron. Since the chlorine atom gained an electron, and now has 17 protons and 18 electrons, it is a chlorine ion with a negative charge. The positively charged sodium ion is now attracted to the negatively charged chlorine ion, and NaCl or table salt is formed. This is an ionic bond. So, ionic bonding is when an electron transfer takes place and generates 2 oppositely charged ions. Now for covalent bonds. Covalent bonds are chemical bonds that are formed by the sharing of one or more pairs of electrons by the outer energy levels or shells of two atoms. The 4 major elements of the body, carbon, oxygen, hydrogen and nitrogen almost always form covalent bonds by sharing electrons. So, for instance, 2 hydrogen atoms can bond by sharing a pair of electrons. Hydrogen is one of the exceptions to the octet rule of having 8 electrons in the outer shell, because it only has one shell. Let’s look at carbon dioxide or co2 again, which form a covalent bond. Oxygen has an atomic mass of 8, so 8 protons, and 8 electrons, 2 in its inner shell and 6 in its outer shell, so, oxygen atoms want 2 more electrons for their outer shell. Carbon has an atomic mass of 6, 6 protons and 6 electrons, 2 in the inner shell and 4 in the outer shell, so it wants 4 more electrons for its outer shell. They can make each other happy by sharing what they have. Oxygen atom number 1 can share 2 of its electrons and the carbon atom can share 2 of its electrons with oxygen atom number one, making oxygen atom number one happy. And oxygen atom number 2 can come in and like oxygen atom number one it can share two of its electrons and the carbon atom has 2 more of its own electrons that it can share with oxygen atom number 2. So now all 3 atoms are happy. By sharing 2 pairs of electrons in this situation a double bond has been formed, and double bonds are important in chemical reactions.
Views: 2636 Whats Up Dude
Double and Triple Bonds
 
13:08
This video shows chemical bonds inside human body respiration & breathing. Oxygen atoms can form double bonds, and nitrogen atoms can form triple bonds to make diatomic gaseous molecules. But carbon atoms can't form a quadruple bonds, instead bonding to make a network solid. The role of O2, N2 and CO2 in breathing and respiration is explored, and more complex molecules are introduced. Subscribe to watch more online chemistry courses & science videos: http://www.youtube.com/channel/UCiX8pAYWBppIbtUZTfGnRJw?sub_confirmation=1 About Atomic School: Atomic School supports the teaching of Atomic Theory to primary school & science students . We provide lesson plans, hands-on classroom resources, demonstration equipment, quizzes and a Teacher's Manual to primary school teachers. Animated videos that clearly explain the scientific ideas supports learning by both teachers and students. As a teacher, you don't have to look anywhere else to implement this program. Our work has been verified by science education researchers at the University of Southern Queensland, Dr Jenny Donovan and Dr Carole Haeusler, who confirm that primary students are capable of learning much more complex scientific concepts than previously thought, and crucially, that they love it. Students run to class! The program has been trialed in Australian schools as well as schools in the Philippines, Iran and India. It is conducted as holiday workshops at the Australian Nuclear Science and Technology Organisation, the Queensland Museum as well as the World Science Festival. It has attracted wide media interest, including TV, radio and print, and the research data has been presented at prestigious American Education Research Association and Australian Science Education Research Association conferences. Atomic Theory underlies all the other sciences- genetics, electronics, nanotechnology, engineering and astronomy- so an early understanding will set them up for a more successful learning sequence for all their science subjects, and support their mastery of mathematics as well. We also have extension programs that cover Biology, Physics and Astronomy to an equal depth. About Ian Stuart (Email: [email protected]): The founder of Atomic School, Ian Stuart, taught Chemistry and Physics for 25 years at senior levels before he realized that his 8-year old son, Tom, could understand Atomic Theory at a much deeper level than he expected. After visiting Tom's class at school, he discovered that his peers could also grasp the abstract scientific concepts, as well as apply it usefully to the real world. Ian then developed a program to teach the advanced concepts of high school Chemistry, Physics and Biology to students 10 years younger than they normally would. He found that this engaged their interest in modern science early, and sustained it through to high school and beyond. It also sets them up for future success in their academic and career paths. Ian has a Bachelor's Degree in Chemistry from the University of Queensland and a Master's degree in Electrochemistry from the University of Melbourne. Connect with Atomic School on social media: http://facebook.com/AtomicSchool http://twitter.com/AtomicSchools http://instagram.com/AtomicSchools Video transcript: The thought experiments from our last video showed that hydrogen atoms can make only one bond, oxygen atoms can make 2, nitrogen three and carbon 4 bonds with other atoms. This number of bonds that an atom can make is called its valency. Hydrogen has a valency of 1, oxygen 2, nitrogen 3 and carbon 4. In our next thought experiment, we'll put lots of oxygen atoms in a box. But no hydrogen atoms this time. Like hydrogen, oxygen atoms stick together in pairs. 3.1 When another oxygen atom hits this pair, it doesn’t stick. HC? How come? Don’t oxygen atoms like to bond to two other atoms? If it bond with hydrogen, which has only one bond, it will need two of them, and the new molecule will be H2O, water. But when it bonds with another oxygen, it has one bond left over. The other oxygen does too. If hydrogen atoms were available they could join with these bonds to make a complete molecule. But if there aren't any spare hydrogen atoms floating about, can you see another solution? The oxygens can bond to each other a second time. The 2 oxygens then form a double bond between them. Now both oxygen atoms are using both of their bonds, and are satisfying their valency of 2. The stick diagram for this molecule shows the 2 oxygen atoms joined by the double bond. The chemical formula for this molecule is O2. The 2 is showing us that there are 2 oxygen atoms in the molecule, not that there are 2 bonds between the atoms. That's just a coincidence. Oxygen is a colourless gas, and about 20% of the air is made of O2 molecules. When we breathe in, our bodies can absorb them into our blood steam and keep us alive.
Views: 67314 AtomicSchool
Chemistry Music Video 16:  What Kind Of Bonds Are These?
 
03:22
This song describes ionic bonds and covalent bonds, and describes the difference between polar and nonpolar covalent bonds. Music and lyrics copyright 2005 by Mark Rosengarten. All rights reserved. Lyrics: Two atoms met on one fine day One asked if he could bond With the other atom there Of whom he was really fond The second atom shrugged and said Whats your pleasure, son? Are you up for electron transfer Or electron-sharing fun! Ionic or covalent? What kind of bonds are these? Involve valence electrons And form compounds with ease! Metal atoms lose electrons And become a charge of plus Nonmetals gain them happily Look negative to all of us. The opposite charged ions Attract to make ionic bonds The E.N.D. one point seven plus They dissolve real well in ponds! Ionic or covalent? What kind of bonds are these? Involve valence electrons And form compounds with ease! If the E.N.D. is point-five or more And two nonmetals had You have a polar covalent bond One atoms happy, the others sad! The atom with less E.N. Gets a positive charge thats slight And the other, more greedy atom? Slightly negative to our sight! Ionic or covalent? What kind of bonds are these? Involve valence electrons And form compounds with ease! If the E.N.D. is point-four or less Two nonmetal atoms bond With equal pull on electrons Each atom is equal fond No charges will develop And, because of that, no poles Thats why the bond is called nonpolar On and on and on we roll! Ionic or covalent? Now its easy for you to tell Just look up the E.N.D. And you will do real well!
Views: 188030 Mark Rosengarten
Hydrogen Bonds - What Are Hydrogen Bonds - How Do Hydrogen Bonds Form
 
02:48
In this video we discuss hydrogen bonds. We cover how do hydrogen bonds form, the different elements that take part in hydrogen bonds, and why doesn't oil and water mix. What are hydrogen bonds? An attractive force called a hydrogen bond can exist between certain molecules. These bonds are weaker than ionic or covalent bonds, because it takes less energy to break these types of bonds, however, a large number of these bonds going on can exert a strong force. Hydrogen bonds are the result of an unequal charge distribution on a molecule, these molecules are said to be polar. If we look at a water molecule, we can see the oxygen atom shares electrons with 2 different hydrogen atoms. So, in total this molecule has 10 protons, 8 from oxygen and 1 each from the hydrogen atoms, and a total of 10 electrons, 2 shared between the oxygen atom and hydrogen atom number one, 2 shared between the oxygen atom and hydrogen atom number 2, and the other 6 non shared electrons from the oxygen atom. So, this water molecule is electrically neutral, but it has a partial positive side, the hydrogen side, and a partial negative side, the oxygen side of the molecule. The electrons are not shared equally within the molecule, as they have a higher probability of being found closer to the nucleus of the oxygen atom, giving that end a slightly negative charge. So, the hydrogen atoms end of the molecule will have a slightly positive charge. These charged ends weakly attach the positive end of one water molecule to the negative end of an adjacent water molecule. When water is in liquid form there a few hydrogen bonds, solid form, many bonds, and when water is steam or gas, there are no bonds, because the molecules are too far apart to form any bonds. Hydrogen bonds only form between hydrogen atoms that are covalently bonded, or bonds where electrons are being shared and not transferred, to an oxygen, nitrogen or fluorine atom. These bonds make water ideal for the chemistry of life. Hydrogen bonds are also important in the structure of proteins and nucleic acids, which we will cover in later videos. So, now we know that water molecules are polar, or have slightly positive and slightly negative ends, and in fact, many lipids, or fats and oils, are not polar. So their molecules share electrons equally in their bonds. So, these are nonpolar molecules. This means that when water and oil come together they do not form bonds with one another. Even when we try to mix them, the water molecules will eventually separate because their polar molecules are attracted to one another and will form hydrogen bonds, separating the water and the nonpolar oil molecules.
Views: 53838 Whats Up Dude
Why atoms form bonds
 
05:37
Why do atoms form bonds?
Views: 2762 David Spence
Covalent Bonds | Cell Biology | Biochemistry
 
04:32
Segment from the program Biochemistry I: Atoms, Ions, and Molecules. To purchase this program please visit http://www.greatpacificmedia.com/
Views: 81349 greatpacificmedia
GCSE Science Chemistry (9-1) Covalent bonding 1
 
04:59
Watch all my videos at www.freesciencelessons.co.uk This video is for the new GCSE specifications (levels 1-9) for all exam boards. In this video, we start looking at covalent bonding. We look at how the atoms are covalently bonded in a hydrogen molecule, a chlorine molecule and in a molecule of hydrogen chloride.
Views: 101294 Freesciencelessons
Ionic Bond | #aumsum #kids #education #science #learn
 
04:59
Ionic bond is the transfer of electrons from a metallic atom to a non-metallic atom. Sodium Chloride: Oppositely charged sodium and chloride ions are held by a strong electrostatic force of attraction known as Ionic Bond.
Views: 1056675 It's AumSum Time
Chemistry: What is a Covalent Bond? (Polar and Nonpolar)
 
06:30
Chemistry: What is a Covalent Bond? (Polar and Nonpolar) Covalent bonds are one of the 3 main types of intramolecular forces, along with ionic bonds and metallic bonds. Covalent bonds are the result of atoms sharing their valence electrons. Covalent bonds can be polar or nonpolar, depending on the electronegativies of the atoms involved in the bond. We show five examples of covalent bonds using Lewis dot structure notation: HF, CO2, H2, H2O and CCl4. You can click on the links below to jump to sections in the lesson: 0:28 Definition of a Covalent Bond 0:42 Example 1: HF (single covalent bond) 1:23 Example 2: CO2 (double covalent bond) 2:09 Nonpolar covalent bonds 2:20 Example 3: H2 2:43 Polar covalent bonds 2:48 Example 4: H2O 3:58 Example 5: CCl4 4:39 Pauling Bond Polarity Scale (Linus Pauling) 5:15 Do covalent bonds break apart in water? (electrolytes) Click to watch our video about ionic bonds: http://bit.ly/1UWsJRL Click to see our video about metallic bonds: http://bit.ly/1UoASiZ And here's our video comparing ionic and covalent bonds: http://bit.ly/1Nz4Kpy Intermolecular Forces: http://bit.ly/2xAnoMt ///////////////////////// Essential Chemistry Lessons help all year long: What is a Mole? Avogadro's Number: http://bit.ly/2laJh0S Molar Mass: http://bit.ly/2pNfg8L Scientific Notation: http://bit.ly/2cv6yTw Significant Figures: http://bit.ly/2b1g3aJ Unit Conversion 1: http://bit.ly/1YGOQgw Unit Conversion 2: http://bit.ly/1RGbwZ1 Periodic Table: http://bit.ly/2gmSWfe ///////////////////////// Our Periodic Table app is FREE in the Google Play store! http://goo.gl/yg9mAF Don't miss our other chemistry videos: https://www.youtube.com/watch?v=aQw9G... Please Subscribe so you'll hear about our newest videos! http://bit.ly/1ixuu9W If you found this video helpful, please give it a "thumbs up" and share it with your friends! ///////////////////////// To support more videos from Socratica, visit Socratica Patreon https://www.patreon.com/socratica http://bit.ly/29gJAyg Socratica Paypal https://www.paypal.me/socratica We also accept Bitcoin! :) Our address is: 1EttYyGwJmpy9bLY2UcmEqMJuBfaZ1HdG9 ///////////////////////// We recommend the following books: Brown and LeMay Chemistry: The Central Science 13th edition: http://amzn.to/2n5SXtB 14th edition: http://amzn.to/2mHk79f McGraw/Hill Chemistry by Chang & Goldsby http://amzn.to/2mO2khf Uncle Tungsten: Memories of a Chemical Boyhood by Oliver Sacks http://amzn.to/2nlaJp0 Napoleon's Buttons: How 17 Molecules Changed History http://amzn.to/2lJZzO3 ///////////////////////// Written and Produced by Kimberly Hatch Harrison About our instructor: Kimberly Hatch Harrison received degrees in Biology and English Literature from Caltech before working in pharmaceuticals research, developing drugs for autoimmune disorders. She then continued her studies in Molecular Biology (focusing on Immunology and Neurobiology) at Princeton University, where she began teaching as a graduate student. Her success in teaching convinced her to leave the glamorous world of biology research and turn to teaching full-time. Kimberly taught AP Biology and Chemistry at an exclusive prep school for eight years. She is now the head writer and producer of Socratica Studios.
Views: 164108 Socratica
What Are Covalent Bonds | Chemistry for All | FuseSchool
 
05:53
Learn the basics about covalent bonds, when learning about properties of matter. When similar atoms react, like non-metals combining with other non-metals, they share electrons. This is covalent bonding. Non-metals have shells of electrons that are normally half or more than half full of electrons. Since they have a strong attraction for a few additional electrons, it is energetically unfavourable for any of them to lose electrons, so they share electrons by overlapping orbitals. This makes a bonding orbital, or covalent bond, that contains two or more electrons. Covalent bonds can be represented by a dot and cross diagram. These diagrams show only the valence electrons. Covalent bonds are directional, which means they are in a fixed position. The overlap between orbitals mean that the atoms in covalent bonds are very close, and make covalent bonds strong. There are two kinds of covalent structure - small molecules, like water, and giant compounds, like diamond. The electrons in the bonds are evenly shared, which means the bonds are not polarised; there is little attraction between molecules, and forces between molecules are weak. Compounds made from small covalent molecules have low melting and boiling points and are volatile. They also don’t conduct electricity. Carbon and silicon tend to form giant covalent compounds. These bond in the same way, but instead of forming small molecules with one or two bonds, they form four, make up huge lattices or chains of many many linked up atoms. Diamond is a common example, and is made up of Carbon. These compounds have very high melting and boiling points because you have to break covalent bonds rather than intermolecular forces to make them free enough to act like liquids or gases. The covalent bonds hold them rigidly in place in the giant lattice. SUBSCRIBE to the Fuse School YouTube channel for many more educational videos. Our teachers and animators come together to make fun & easy-to-understand videos in Chemistry, Biology, Physics, Maths & ICT. JOIN our platform at www.fuseschool.org This video is part of 'Chemistry for All' - a Chemistry Education project by our Charity Fuse Foundation - the organisation behind The Fuse School. These videos can be used in a flipped classroom model or as a revision aid. Find our other Chemistry videos here: https://www.youtube.com/playlist?list=PLW0gavSzhMlReKGMVfUt6YuNQsO0bqSMV Twitter: https://twitter.com/fuseSchool Access a deeper Learning Experience in the Fuse School platform and app: www.fuseschool.org Follow us: http://www.youtube.com/fuseschool Friend us: http://www.facebook.com/fuseschool This Open Educational Resource is free of charge, under a Creative Commons License: Attribution-NonCommercial CC BY-NC ( View License Deed: http://creativecommons.org/licenses/by-nc/4.0/ ). You are allowed to download the video for nonprofit, educational use. If you would like to modify the video, please contact us: [email protected]
Introduction to Atoms, Ions, Covalent and Ionic Bonds
 
05:11
A short introduction to atoms, ions, covalent bonds, ionic bonds, and elements.
Views: 2387 dek2635
Basic Chemistry for Biology Part 4: Covalent Bonding and Structural Formulas
 
09:28
This video series, Basic Chemistry for Biology Students, teaches the basic chemistry that you’ll need to know in your biology course, whether that’s introductory high school level, AP Biology, or even a first year college biology course. The series covers 1. The structure of atoms (a nucleus with protons and neutrons; electrons orbiting outside in orbitals) 2. What biology students need to know about the Periodic Table. 3. The “Octet Rule” for understanding how electrons are organized into orbitals. 4. Ionic bonding (how atoms trade electrons to become charged ions, and the ionic bonds that result) 5. Covalent bonding (how atoms share electrons to form molecules) Key chemistry terms (element, compounds, molecules, etc). 6. Understanding chemical formulas (molecular formulas and structural formulas). Each video is tightly linked to tutorials at http://www.sciencemusicvideos.com/basic-chemistry-tutorials/
Views: 23840 sciencemusicvideos
Chemical Bonding Covalent Bonds and Ionic Bonds
 
09:54
Chemical Bonding Covalent Bonds and Ionic Bonds. Mr. Causey discusses ionic bonds, covalent bonds and chemical bonding. You need to know the periodic table, valence electrons, lewis dot symbols, oxidation numbers and electronegativity in order to determine chemicals bonds. http://www.yourCHEMcoach.com Subscribe for more chemistry videos: http://bit.ly/1jeutVl Basic Rules - 0:56 Valence Electrons - 1:10 Electronegativity - 1:18 Chemical Bonding - 1:46 Ionic Bond - 2:58 Covalent Bond - 4:00 Compound Characteristics - 6:26 Name that Bond - 7:50 Thinking Time - 8:57 Share this Video: https://www.youtube.com/watch?v=KjoQHqgzda8 Resources: Polyatomic Ion Cheat Sheet: http://bit.ly/14e2pbw Periodic Table: http://bit.ly/ptable9 Related Videos: Related Videos: Naming Ionic and Covalent Compounds: http://www.youtube.com/watch?v=9XUsOLaz3zY Metallic Bonding: http://www.youtube.com/watch?v=3uNETGK_sb4 Molecular Geometry: http://www.youtube.com/watch?v=-pq2wum1uDc Intermolecular Forces: http://www.youtube.com/watch?v=wYZg1j7o2x4 Contact Me: [email protected] Follow Me: http://www.twitter.com/#!/mrcausey http://pinterest.com/mistercausey/ http://www.facebook.com/profile.php?id=814523544
Views: 272226 Mr. Causey
Basic Chemistry for Biology, Part 1: Atoms
 
06:21
This video series, Basic Chemistry for Biology Students, teaches the basic chemistry that you’ll need to know in your biology course, whether that’s introductory high school level, AP Biology, or even a first year college biology course. The series covers 1. The structure of atoms (a nucleus with protons and neutrons; electrons orbiting outside in orbitals) 2. What biology students need to know about the Periodic Table. 3. The “Octet Rule” for understanding how electrons are organized into orbitals. 4. Ionic bonding (how atoms trade electrons to become charged ions, and the ionic bonds that result) 5. Covalent bonding (how atoms share electrons to form molecules) Key chemistry terms (element, compounds, molecules, etc). 6. Understanding chemical formulas (molecular formulas and structural formulas). Each video is tightly linked to tutorials at http://www.sciencemusicvideos.com/basic-chemistry-tutorials/
Views: 96949 sciencemusicvideos

Good sample of cover letter
Sample cover letter for student radiologic technologist
Cover letter for pharmacy intern position
Country club cover letters
A sample annotated bibliography in mla format