Home
Search results “Research data analysis types”
Fundamentals of Qualitative Research Methods: Data Analysis (Module 5)
 
17:12
Qualitative research is a strategy for systematic collection, organization, and interpretation of phenomena that are difficult to measure quantitatively. Dr. Leslie Curry leads us through six modules covering essential topics in qualitative research, including what it is qualitative research and how to use the most common methods, in-depth interviews and focus groups. These videos are intended to enhance participants' capacity to conceptualize, design, and conduct qualitative research in the health sciences. Welcome to Module 5. Bradley EH, Curry LA, Devers K. Qualitative data analysis for health services research: Developing taxonomy, themes, and theory. Health Services Research, 2007; 42(4):1758-1772. Learn more about Dr. Leslie Curry http://publichealth.yale.edu/people/leslie_curry.profile Learn more about the Yale Global Health Leadership Institute http://ghli.yale.edu
Views: 146615 YaleUniversity
Data Collection: Understanding the Types of Data.
 
06:43
Data falls into several categories. Each type has some pros and cons, and is best suited for specific needs. Learn more in this short video from our Data Collection DVD available at http://www.velaction.com/data-collection-lean-training-on-dvd/.
Views: 136722 VelactionVideos
Data Collection & Analysis
 
06:36
Impact evaluations need to go beyond assessing the size of the effects (i.e., the average impact) to identify for whom and in what ways a programme or policy has been successful. This video provides an overview of the issues involved in choosing and using data collection and analysis methods for impact evaluations
Views: 54083 UNICEF Innocenti
The Data Analysis Process
 
05:39
The process of doing statistical analysis follows a clearly defined sequence of steps whether the analysis is being done in a formal setting like a medical lab or informally like you would find in a corporate environment. This lecture gives a brief overview of the process.
Views: 42205 White Crane Education
10 Qualitative data analysis
 
10:15
A video tutorial from the National Union of Students, introducing the principles and practice of qualitative data analysis particularly for free text comments on the National Student Survey.
Views: 6759 Kate Little
Types of statistical studies | Statistical studies | Probability and Statistics | Khan Academy
 
09:51
Practice this lesson yourself on KhanAcademy.org right now: https://www.khanacademy.org/math/probability/statistical-studies/types-of-studies/e/types-of-statistical-studies?utm_source=YT&utm_medium=Desc&utm_campaign=ProbabilityandStatistics Watch the next lesson: https://www.khanacademy.org/math/probability/statistical-studies/types-of-studies/v/correlation-and-causality?utm_source=YT&utm_medium=Desc&utm_campaign=ProbabilityandStatistics Missed the previous lesson? https://www.khanacademy.org/math/probability/statistical-studies/statistical-questions/v/reasonable-samples?utm_source=YT&utm_medium=Desc&utm_campaign=ProbabilityandStatistics Probability and statistics on Khan Academy: We dare you to go through a day in which you never consider or use probability. Did you check the weather forecast? Busted! Did you decide to go through the drive through lane vs walk in? Busted again! We are constantly creating hypotheses, making predictions, testing, and analyzing. Our lives are full of probabilities! Statistics is related to probability because much of the data we use when determining probable outcomes comes from our understanding of statistics. In these tutorials, we will cover a range of topics, some which include: independent events, dependent probability, combinatorics, hypothesis testing, descriptive statistics, random variables, probability distributions, regression, and inferential statistics. So buckle up and hop on for a wild ride. We bet you're going to be challenged AND love it! About Khan Academy: Khan Academy offers practice exercises, instructional videos, and a personalized learning dashboard that empower learners to study at their own pace in and outside of the classroom. We tackle math, science, computer programming, history, art history, economics, and more. Our math missions guide learners from kindergarten to calculus using state-of-the-art, adaptive technology that identifies strengths and learning gaps. We've also partnered with institutions like NASA, The Museum of Modern Art, The California Academy of Sciences, and MIT to offer specialized content. For free. For everyone. Forever. #YouCanLearnAnything Subscribe to KhanAcademy’s Probability and Statistics channel: https://www.youtube.com/channel/UCRXuOXLW3LcQLWvxbZiIZ0w?sub_confirmation=1 Subscribe to KhanAcademy: https://www.youtube.com/subscription_center?add_user=khanacademy
Views: 166577 Khan Academy
Qualitative analysis of interview data: A step-by-step guide
 
06:51
The content applies to qualitative data analysis in general. Do not forget to share this Youtube link with your friends. The steps are also described in writing below (Click Show more): STEP 1, reading the transcripts 1.1. Browse through all transcripts, as a whole. 1.2. Make notes about your impressions. 1.3. Read the transcripts again, one by one. 1.4. Read very carefully, line by line. STEP 2, labeling relevant pieces 2.1. Label relevant words, phrases, sentences, or sections. 2.2. Labels can be about actions, activities, concepts, differences, opinions, processes, or whatever you think is relevant. 2.3. You might decide that something is relevant to code because: *it is repeated in several places; *it surprises you; *the interviewee explicitly states that it is important; *you have read about something similar in reports, e.g. scientific articles; *it reminds you of a theory or a concept; *or for some other reason that you think is relevant. You can use preconceived theories and concepts, be open-minded, aim for a description of things that are superficial, or aim for a conceptualization of underlying patterns. It is all up to you. It is your study and your choice of methodology. You are the interpreter and these phenomena are highlighted because you consider them important. Just make sure that you tell your reader about your methodology, under the heading Method. Be unbiased, stay close to the data, i.e. the transcripts, and do not hesitate to code plenty of phenomena. You can have lots of codes, even hundreds. STEP 3, decide which codes are the most important, and create categories by bringing several codes together 3.1. Go through all the codes created in the previous step. Read them, with a pen in your hand. 3.2. You can create new codes by combining two or more codes. 3.3. You do not have to use all the codes that you created in the previous step. 3.4. In fact, many of these initial codes can now be dropped. 3.5. Keep the codes that you think are important and group them together in the way you want. 3.6. Create categories. (You can call them themes if you want.) 3.7. The categories do not have to be of the same type. They can be about objects, processes, differences, or whatever. 3.8. Be unbiased, creative and open-minded. 3.9. Your work now, compared to the previous steps, is on a more general, abstract level. 3.10. You are conceptualizing your data. STEP 4, label categories and decide which are the most relevant and how they are connected to each other 4.1. Label the categories. Here are some examples: Adaptation (Category) Updating rulebook (sub-category) Changing schedule (sub-category) New routines (sub-category) Seeking information (Category) Talking to colleagues (sub-category) Reading journals (sub-category) Attending meetings (sub-category) Problem solving (Category) Locate and fix problems fast (sub-category) Quick alarm systems (sub-category) 4.2. Describe the connections between them. 4.3. The categories and the connections are the main result of your study. It is new knowledge about the world, from the perspective of the participants in your study. STEP 5, some options 5.1. Decide if there is a hierarchy among the categories. 5.2. Decide if one category is more important than the other. 5.3. Draw a figure to summarize your results. STEP 6, write up your results 6.1. Under the heading Results, describe the categories and how they are connected. Use a neutral voice, and do not interpret your results. 6.2. Under the heading Discussion, write out your interpretations and discuss your results. Interpret the results in light of, for example: *results from similar, previous studies published in relevant scientific journals; *theories or concepts from your field; *other relevant aspects. STEP 7 Ending remark This tutorial showed how to focus on segments in the transcripts and how to put codes together and create categories. However, it is important to remember that it is also OK not to divide the data into segments. Narrative analysis of interview transcripts, for example, does not rely on the fragmentation of the interview data. (Narrative analysis is not discussed in this tutorial.) Further, I have assumed that your task is to make sense of a lot of unstructured data, i.e. that you have qualitative data in the form of interview transcripts. However, remember that most of the things I have said in this tutorial are basic, and also apply to qualitative analysis in general. You can use the steps described in this tutorial to analyze: *notes from participatory observations; *documents; *web pages; *or other types of qualitative data. STEP 8 Suggested reading Alan Bryman's book: 'Social Research Methods' published by Oxford University Press. Steinar Kvale's and Svend Brinkmann's book 'InterViews: Learning the Craft of Qualitative Research Interviewing' published by SAGE. Good luck with your study. Text and video (including audio) © Kent Löfgren, Sweden
Views: 668675 Kent Löfgren
Types of Data: Nominal, Ordinal, Interval/Ratio - Statistics Help
 
06:20
The kind of graph and analysis we can do with specific data is related to the type of data it is. In this video we explain the different levels of data, with examples. Subtitles in English and Spanish.
Views: 786541 Dr Nic's Maths and Stats
Introduction to Statistics..What are they? And, How Do I Know Which One to Choose?
 
39:54
This tutorial provides an overview of statistical analyses in the social sciences. It distinguishes between descriptive and inferential statistics, discusses factors for choosing an analysis procedure, and identifies the difference between parametric and nonparametric procedures.
Views: 216087 The Doctoral Journey
Data Analytics - Descriptive , Predictive and Prescriptive Analytics
 
11:03
@ Members ~ This video would let you know about rising importance of Analytics where by we are covering all 4 Branches of Analytics like Financial Analytics , Risk Based Analytics , Cash Flow Analytics and Data Analytics. Video would also let you know about 3 types of Analytics covering Descriptive Analytics , Predictive Analytics and Prescriptive Analytics. You are most welcome to connect with us at 91-9899242978 (Handheld) , Skype ~ Rahul5327 , Twitter @ Rahulmagan8 , [email protected] , [email protected] or visit our website - www.treasuryconsulting.in
Data Analysis & Discussion
 
14:51
This video is meant to be used as an introductory lesson to Mini Research Writing focusing on Data Analysis and Discussion. As this is a mini class project, some of the requirements have been made simple due to time constraints. Plus, the focus of this mini research paper is to get students familiarized to the ways of writing an academic paper and the items that needs to be included. suitable for beginners!
Views: 16979 NurLiyana Isa
9 Quantitative data analysis
 
13:56
A video tutorial from the National Union of Students, introducing the basic principles of quantitative data analysis and applying them to National Student Survey data.
Views: 13091 Kate Little
Choosing which statistical test to use - statistics help.
 
09:33
Seven different statistical tests and a process by which you can decide which to use. The tests are: Test for a mean, test for a proportion, difference of proportions, difference of two means - independent samples, difference of two means - paired, chi-squared test for independence and regression. This video draws together videos about Helen, her brother, Luke and the choconutties. There is a sequel to give more practice choosing and illustrations of the different types of test with hypotheses.
Views: 681456 Dr Nic's Maths and Stats
Qualitative Data Analysis
 
15:14
This is Chapter 10 about how to analyze qualitative data
Views: 10666 Qingwen Dong
Sociology Research Methods: Crash Course Sociology #4
 
10:11
Today we’re talking about how we actually DO sociology. Nicole explains the research method: form a question and a hypothesis, collect data, and analyze that data to contribute to our theories about society. Crash Course is made with Adobe Creative Cloud. Get a free trial here: https://www.adobe.com/creativecloud.html *** The Dress via Wired: https://www.wired.com/2015/02/science-one-agrees-color-dress/ Original: http://swiked.tumblr.com/post/112073818575/guys-please-help-me-is-this-dress-white-and *** Crash Course is on Patreon! You can support us directly by signing up at http://www.patreon.com/crashcourse Thanks to the following Patrons for their generous monthly contributions that help keep Crash Course free for everyone forever: Mark, Les Aker, Robert Kunz, William McGraw, Jeffrey Thompson, Jason A Saslow, Rizwan Kassim, Eric Prestemon, Malcolm Callis, Steve Marshall, Advait Shinde, Rachel Bright, Kyle Anderson, Ian Dundore, Tim Curwick, Ken Penttinen, Caleb Weeks, Kathrin Janßen, Nathan Taylor, Yana Leonor, Andrei Krishkevich, Brian Thomas Gossett, Chris Peters, Kathy & Tim Philip, Mayumi Maeda, Eric Kitchen, SR Foxley, Justin Zingsheim, Andrea Bareis, Moritz Schmidt, Bader AlGhamdi, Jessica Wode, Daniel Baulig, Jirat -- Want to find Crash Course elsewhere on the internet? Facebook - http://www.facebook.com/YouTubeCrashCourse Twitter - http://www.twitter.com/TheCrashCourse Tumblr - http://thecrashcourse.tumblr.com Support Crash Course on Patreon: http://patreon.com/crashcourse CC Kids: http://www.youtube.com/crashcoursekids
Views: 317118 CrashCourse
Qualitative and Quantitative Data
 
02:01
Quantitative Data vs Qualitative Data Additional Information on Qualitative vs Quantitative Data http://www.moomoomath.com/qualitative-and-quantitative-data.html Data can be divided into two groups called quantitative and qualitative data Quantitative data is numerical Qualitative Data id descriptive data Let’s look at examples of both Examples of quantitative data would be The number of pets, time of day, the temperature outside Quantitative data can be graphed If you count or measure, you are collecting quantitative data There are two types of quantitative data, discrete and continuous Discrete data is usually data you can count and continuous data is usually data you measure. I have a separate video on these two types of data. Qualitative is descriptive or observations and uses words For example, the color of a house, smell of a sock, texture of a shirt Quantitative or Qualitative Consider a cat Quantitative Data would be the cat has 4 legs and weighs 10 pounds Qualitative data would be the cat is yellow, and has soft fur A bookshelf Quantitative would be you have 50 books and is 150 centimeters tall. Qualitative data would be it is multi-color and has a smooth texture You may also enjoy.. Qualitative and Quantitative Data https://www.youtube.com/watch?v=2X-QSU6-hPU Quantitative Qualitative Song https://www.youtube.com/watch?v=-S2EiPD4-W0 -~-~~-~~~-~~-~- Please watch: "Study Skills Teacher's Secret Guide to your Best Grades" https://www.youtube.com/watch?v=f3bsg8gaSbw -~-~~-~~~-~~-~-
Views: 116877 MooMoo Math and Science
Qualitative Data Analysis - Coding & Developing Themes
 
10:39
This is a short practical guide to Qualitative Data Analysis
Views: 98367 James Woodall
Qualitative data analysis
 
22:49
Views: 39993 Jeongeun Kim
Qualitative vs. Quantitative
 
09:03
Let's go on a journey and look at the basic characteristics of qualitative and quantitative research!
Views: 692576 ChrisFlipp
Data Collection Methods
 
02:10
This video was completed as part of a Masters project in DCU. It is the Introduction to a series of videos on Data Collection Methods
Views: 89351 Scott Crombie
Qualitative Analysis: Coding and Categorizing Data by Philip Adu, Ph.D.
 
01:15:43
Data analysis is all about data reduction. But how do you reduce data without losing the meaning? What is the coding process? What coding strategies can you use? How do you make sure the categories or themes address your research question(s)? How do you present your qualitative findings in a meaningful manner? If you want answers to these questions, watch this video. To access the PowerPoint slides, please go to:https://www.slideshare.net/kontorphilip/qualitative-analysis-coding-and-categorizing
How to Know You Are Coding Correctly: Qualitative Research Methods
 
03:32
Coding your qualitative data, whether that is interview transcripts, surveys, video, or photographs, is a subjective process. So how can you know when you are doing it well? We give you some basic tips.
Types of Qualitative Data Collection Part 1
 
04:37
-- Created using PowToon -- Free sign up at http://www.powtoon.com/ . Make your own animated videos and animated presentations for free. PowToon is a free tool that allows you to develop cool animated clips and animated presentations for your website, office meeting, sales pitch, nonprofit fundraiser, product launch, video resume, or anything else you could use an animated explainer video. PowToon's animation templates help you create animated presentations and animated explainer videos from scratch. Anyone can produce awesome animations quickly with PowToon, without the cost or hassle other professional animation services require.
Views: 40175 Mel Bell
Data Analytics for Beginners | Introduction to Data Analytics | Data Analytics Tutorial
 
01:27:18
Data Analytics for Beginners -Introduction to Data Analytics https://acadgild.com/big-data/data-analytics-training-certification?utm_campaign=enrol-data-analytics-beginners-THODdNXOjRw&utm_medium=VM&utm_source=youtube Hello and Welcome to data analytics tutorial conducted by ACADGILD. It’s an interactive online tutorial. Here are the topics covered in this training video: • Data Analysis and Interpretation • Why do I need an Analysis Plan? • Key components of a Data Analysis Plan • Analyzing and Interpreting Quantitative Data • Analyzing Survey Data • What is Business Analytics? • Application and Industry facts • Importance of Business analytics • Types of Analytics & examples • Data for Business Analytics • Understanding Data Types • Categorical Variables • Data Coding • Coding Systems • Coding, coding tip • Data Cleaning • Univariate Data Analysis • Statistics Describing a continuous variable distribution • Standard deviation • Distribution and percentiles • Analysis of categorical data • Observed Vs Expected Distribution • Identifying and solving business use cases • Recognizing, defining, structuring and analyzing the problem • Interpreting results and making the decision • Case Study Get started with Data Analytics with this tutorial. Happy Learning For more updates on courses and tips follow us on: Facebook: https://www.facebook.com/acadgild Twitter: https://twitter.com/acadgild LinkedIn: https://www.linkedin.com/company/acadgild
Views: 206363 ACADGILD
Excel 2013 Statistical Analysis #01: Using Excel Efficiently For Statistical Analysis (100 Examples)
 
02:22:43
Download File: https://people.highline.edu/mgirvin/AllClasses/210Excel2013/Ch00/Excel2013StatisticsChapter00.xlsx All Excel Files for All Video files: http://people.highline.edu/mgirvin/excelisfun.htm. Intro To Excel: Store Raw Data, Data Types, Data Analysis, Formulas, PivotTables, Charts, Keyboards, Number Formatting, Data Analysis & More: (00:08) Introduction to class (00:49) Cells, Worksheets, Workbooks, File Names (02:54) Navigating Worksheets & Workbook (03:58) Navigation Keys (04:15) Keyboard move Active Sheet (05:40) Ribbon Tabs (06:25) Add buttons to Quick Access Tool Bar (07:40) What Excel does: Store Raw Data, Make Calculations, Data Analysis & Charting (08:55) Introduction to Data Analysis (10:37) Data Types in Excel: Text, Numbers, Boolean, Errors, Empty Cells (11:16) Keyboard Enter puts content in cell and move selected cell down (13:00) Data Type DEFAULT Alignments (13:11) First Formula. Entering Cell References in formulas (13:35) Keyboard Ctrl + Enter puts content in cell & keep cell selected (14:45) Why we don’t override DEFAULT Alignments (15:05) Keyboard Ctrl + Z is Undo (17:05) Proper Data Sets & Raw Data (24:21) How To Enter Data & Data Labels (24:21) Stylistic Formatting (26:35) AVERAGE Function (27:31) Format Formulas Differently than Raw Data (28:30) Keyboard Ctrl + C is Copy. Keyboard Ctrl + V is Paste (29:59) Use Eraser remove Formatting Only (29:19) Keyboard Ctrl + B adds Bold (29:57) Excel’s Golden Rule (31:43) Keyboard F2 puts cell in Edit Mode (32:01) Violating Excel’s Golden Rule (34:12) Arrow Keys to put cell references in formulas (35:40) Full Discussion about Formulas & Formulas Elements (37:22) SUM function Keyboard is Alt + = (38:22) Aggregate functions (38:50) Why we use ranges in functions (40:56) COUNT & COUNTA functions (42:47) Edit Formula & change cell references (44:18) Absolute & Relative Cell References (45:52) Use Delete Key, Not Right-click Delete (46:40) Fill Handle & Angry Rabbit to copy formula (47:41) Keyboard F4 Locks Cell Reference (make Absolute) (49:45) Keyboard Tab puts content in Cell and move selected Cell to right (50:55) Order of Operation error (52:17) Range Finder to find formula errors (52:34) Lock Cell Reference after you put cell in Edit Mode (53:58) Quickly copy an edited formula down a column (53:07) F2 key in last cell to find formula errors (54:15) Fix incorrect range in function (54:55) SQRT function & Fractional Exponents (57:20) STDEV.P function (58:10) Navigate Large Data Sets (58:48) Keyboard Ctrl + Arrow jumps to bottom of data set (59:42) Keyboard Ctrl + Shift + Arrow selects to bottom of data set (Current Range) (01:01:41) Keyboard Shift + Enter puts content in Cell and move selected Cell up (01:02:55) Counting with conditions or criteria: COUNTIFS function (01:03:43) Keyboard Ctrl + Backspace jumps back to Active Cell (01:05:31) Counting between an upper & lower limit with COUNTIFS (01:07:36) COUNTIFS copied down column (01:10:08) Joining Comparative Operator with Cell Reference in formula (01:12:50) Data Analysis features in Excel (01:13:44) Sorting (01:16:59) Filtering (01:20:39) Introduction to PivotTables (01:23:39) Create PivotTable dialog box (01:24:33) Dragging & dropping Fields to create PivotTable (01:25:31) Dragging Field to Row area creates a Unique List (01:26:17) Outline/Tabular Layout (01:27:00) Value Field Settings dialog to change: Number Formatting, Function, Name (01:28:12) 2nd & 3rd PivotTable examples (01:31:23) What is a Cross Tabulated Report? (01:33:04) Create Cross Tabulated Report w PivotTable (01:35:05) Show PivotTable Field List (01:36:48) How to Pivot the Report (01:37:50) Summarize Survey Data with PivotTable. (01:38:34) Keyboard Alt, N, V opens PivotTable dialog box (01:41:38) PivotTable with 3 calculations: COUNT, MAX & MIN (01:43:25) Count & Count Number calculations in a PivotTable (01:45:30) Excel 2013 Charts to Visually Articulate Quantitative Data (01:47:00) #1 Rule for Charts: No Chart Junk! (01:47:30) Explain chart types: Column, Bar, Pie, Line and X-Y Scatter Chart (01:51:34) Create Column Chart using Recommended Chart feature (01:53:00) Remove Field Buttons from Pivot Chart (01:54:10) Chart Formatting Task Pane (01:54:45) Vary Fill Color by point (01:55:15) Format Axis with Numbers by Formatting Source Data in PivotTable (01:56:02) Add Data Labels to Chart (01:57:28) Copy Chart & Create Bar Chart (01:57:48) Change Chart Type (01:58:15) Change Gap Width. (01:59:17) Create Pie Chart (01:59:23) Do NOT use 3-D Pie (01:59:42) Add % Data Labels to Pie Chart (02:00:25) Create Line Chart From PivotTable (02:01:20) Link Chart Tile to Cell (02:02:20) Move a Chart (02:02:33) Create an X-Y Scatter Chart (02:03:35) Add Axis Labels (02:05:27) Number Formatting to help save time (02:07:24) Number Formatting is a Façade (02:10:27) General Number Format (02:10:52) Percentage Number Formatting (02:14:03) Don’t Multiply Relative Frequency by 100 (02:17:27) Formula for % Change & End Amount
Views: 402690 ExcelIsFun
Clinical Research Statistics for Non-Statisticians
 
01:00:37
Through real-world examples, webinar participants learn strategies for choosing appropriate outcome measures, methods for analysis and randomization, and sample sizes as well as tips for collecting the right data to answer your scientific questions.
Views: 8009 RhoInc1984
Communication Research Methods - Discourse Analysis
 
48:49
Introduction to Discourse Analysis Communication Research Methods Arkansas State University
Views: 8519 Dan's Academy
Type I and II Errors, Power, Effect Size, Significance and Power Analysis in Quantitative Research
 
09:42
There is a mistake at 9.22. Alpha is normally set to 0.05 NOT 0.5. Thank you Victoria for bringing this to my attention. This video reviews key terminology relating to type I and II errors along with examples. Then considerations of Power, Effect Size, Significance and Power Analysis in Quantitative Research are briefly reviewed. http://youstudynursing.com/ Research eBook on Amazon: http://amzn.to/1hB2eBd Check out the links below and SUBSCRIBE for more youtube.com/user/NurseKillam Quantitative research is driven by research questions and hypotheses. For every hypothesis there is an unstated null hypothesis. The null hypothesis does not need to be explicitly stated because it is always the opposite of the hypothesis. In order to demonstrate that a hypothesis is likely true researchers need to compare it to the opposite situation. The research hypothesis will be about some kind of relationship between variables. The null hypothesis is the assertion that the variables being tested are not related and the results are the product of random chance events. Remember that null is kind of like no so a null hypothesis means there is no relationship. For example, if a researcher asks the question "Does having class for 12 hours in one day lead to nursing student burnout?" The hypothesis would indicate the researcher's best guess of the results: "A 12 hour day of classes causes nursing students to burn out." Therefore the null hypothesis would be that "12 hours of class in one day has nothing to do with student burnout." The only way of backing up a hypothesis is to refute the null hypothesis. Instead of trying to prove the hypothesis that 12 hours of class causes burnout the researcher must show that the null hypothesis is likely to be wrong. This rule means assuming that there is not relationship until there is evidence to the contrary. In every study there is a chance for error. There are two major types of error in quantitative research -- type 1 and 2. Logically, since they are defined as errors, both types of error focus on mistakes the researcher may make. Sometimes talking about type 1 and type 2 errors can be mentally tricky because it seems like you are talking in double and even triple negatives. It is because both type 1 and 2 errors are defined according to the researcher's decision regarding the null hypothesis, which assumes no relationship among variables. Instead of remembering the entire definition of each type of error just remember which type has to do with rejecting and which one is about accepting the null hypothesis. A type I error occurs when the researcher mistakenly rejects the null hypothesis. If the null hypothesis is rejected it means that the researcher has found a relationship among variables. So a type I error happens when there is no relationship but the researcher finds one. A type II error is the opposite. A type II error occurs when the researcher mistakenly accepts the null hypothesis. If the null hypothesis is accepted it means that the researcher has not found a relationship among variables. So a type II error happens when there is a relationship but the researcher does not find it. To remember the difference between these errors think about a stubborn person. Remember that your first instinct as a researcher may be to reject the null hypothesis because you want your prediction of an existing relationship to be correct. If you decide that your hypothesis is right when you are actually wrong a type I error has occurred. A type II error happens when you decide your prediction is wrong when you are actually right. One way to help you remember the meaning of type 1 and 2 error is to find an example or analogy that helps you remember. As a nurse you may identify most with the idea of thinking about medical tests. A lot of teachers use the analogy of a court room when explaining type 1 and 2 errors. I thought students may appreciate our example study analogy regarding class schedules. It is impossible to know for sure when an error occurs, but researchers can control the likelihood of making an error in statistical decision making. The likelihood of making an error is related to statistical considerations that are used to determine the needed sample size for a study. When determining a sample size researchers need to consider the desired Power, expected Effect Size and the acceptable Significance level. Power is the probability that the researcher will make a correct decision to reject the null hypothesis when it is in reality false, therefore, avoiding a type II error. It refers to the probability that your test will find a statistically significant difference when such a difference actually exists. Another way to think about it is the ability of a test to detect an effect if the effect really exists. The more power a study has the lower the risk of a type II error is. If power is low the risk of a type II error is high. ...
Views: 86140 NurseKillam
Analysing Questionnaires
 
09:52
This video is part of the University of Southampton, Southampton Education School, Digital Media Resources http://www.southampton.ac.uk/education http://www.southampton.ac.uk/~sesvideo/
5 Basic (SPSS) Quantitative Data Analyses For Bachelor's Research
 
08:32
1. Descriptives: 1:32 2. T test: 2:52 3. Correlation: 4:41 4. Chi square: 5:39 5. Linear regression: 6:45 This video discusses the basic statistical analytical procedures that are required for a typical bachelor's thesis. Five stats are highlighted here: descriptives, T test, correlation, Chi square, and linear regression. For requirements on reporting stats, please refer to the appendix of your research module manuals -- Frans Swint and I wrote an instructional text on APA reporting of stats. There is no upper limit in terms of how advanced your stats should be in your bachelor's dissertation. This video covers the basic procedures and is not meant to replace the instructions of your own research supervisor. Please consult your own research advisor for specific questions regarding your data analyses. Please LIKE this video if you enjoyed it. Otherwise, there is a thumb-down button, too... :P ▶ Please SUBSCRIBE to see new videos (almost) every week! ◀ ▼MY OTHER CHANNEL (MUSIC AND PIANO TUTORIALS)▼ https://www.youtube.com/ranywayz ▼MY SOCIAL MEDIA PAGES▼ https://www.facebook.com/ranywayz https://nl.linkedin.com/in/ranywayz https://www.twitter.com/ranywayz Animations are made with Sparkol. Music files retrieved from YouTube Audio Library. All images used in this video are free stock images or are available in the public domain. The views expressed in this video are my own and do not necessarily reflect the organizations with which I am affiliated.
Views: 3177 Ranywayz Random
SPSS for questionnaire analysis:  Correlation analysis
 
20:01
Basic introduction to correlation - how to interpret correlation coefficient, and how to chose the right type of correlation measure for your situation. 0:00 Introduction to bivariate correlation 2:20 Why does SPSS provide more than one measure for correlation? 3:26 Example 1: Pearson correlation 7:54 Example 2: Spearman (rhp), Kendall's tau-b 15:26 Example 3: correlation matrix I could make this video real quick and just show you Pearson's correlation coefficient, which is commonly taught in a introductory stats course. However, the Pearson's correlation IS NOT always applicable as it depends on whether your data satisfies certain conditions. So to do correlation analysis, it's better I bring together all the types of measures of correlation given in SPSS in one presentation. Watch correlation and regression: https://youtu.be/tDxeR6JT6nM ------------------------- Correlation of 2 rodinal variables, non monotonic This question has been asked a few times, so I will make a video on it. But to answer your question, monotonic means in one direction. I suggest you plot the 2 variables and you'll see whether or not there is a monotonic relationship there. If there is a little non-monotonic relationship then Spearman is still fine. Remember we are measuring the TENDENCY for the 2 variables to move up-up/down-down/up-down together. If you have strong non-monotonic shape in the plot ie. a curve then you could abandon correlation and do a chi-square test of association - this is the "correlation" for qualitative variables. And since your 2 variables are ordinal, they are qualitative. Good luck
Views: 495260 Phil Chan
Coding Part 1: Alan Bryman's 4 Stages of qualitative analysis
 
09:37
An overview of the process of qualitative data analysis based on Alan Bryman's four stages of analysis. Reference Bryman, A (2001) Social Research Methods, Oxford: Oxford University Press This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) http://creativecommons.org/licenses/by-nc-sa/4.0/
Views: 192744 Graham R Gibbs
Data Analysis in SPSS Made Easy
 
14:06
Use simple data analysis techniques in SPSS to analyze survey questions.
Views: 792944 Claus Ebster
Sampling & its 8 Types: Research Methodology
 
23:48
Dr. Manishika Jain in this lecture explains the meaning of Sampling & Types of Sampling Research Methodology Population & Sample Systematic Sampling Cluster Sampling Non Probability Sampling Convenience Sampling Purposeful Sampling Extreme, Typical, Critical, or Deviant Case: Rare Intensity: Depicts interest strongly Maximum Variation: range of nationality, profession Homogeneous: similar sampling groups Stratified Purposeful: Across subcategories Mixed: Multistage which combines different sampling Sampling Politically Important Cases Purposeful Sampling Purposeful Random: If sample is larger than what can be handled & help to reduce sample size Opportunistic Sampling: Take advantage of new opportunity Confirming (support) and Disconfirming (against) Cases Theory Based or Operational Construct: interaction b/w human & environment Criterion: All above 6 feet tall Purposive: subset of large population – high level business Snowball Sample (Chain-Referral): picks sample analogous to accumulating snow Advantages of Sampling Increases validity of research Ability to generalize results to larger population Cuts the cost of data collection Allows speedy work with less effort Better organization Greater brevity Allows comprehensive and accurate data collection Reduces non sampling error. Sampling error is however added. Population & Sample @2:25 Sampling @6:30 Systematic Sampling @9:25 Cluster Sampling @ 11:22 Non Probability Sampling @13:10 Convenience Sampling @15:02 Purposeful Sampling @16:16 Advantages of Sampling @22:34 #Politically #Purposeful #Methodology #Systematic #Convenience #Probability #Cluster #Population #Research #Manishika #Examrace For IAS Psychology postal Course refer - http://www.examrace.com/IAS/IAS-FlexiPrep-Program/Postal-Courses/Examrace-IAS-Psychology-Series.htm For NET Paper 1 postal course visit - https://www.examrace.com/CBSE-UGC-NET/CBSE-UGC-NET-FlexiPrep-Program/Postal-Courses/Examrace-CBSE-UGC-NET-Paper-I-Series.htm
Views: 271449 Examrace
BroadE: Statistical methods of data analysis
 
01:02:58
Copyright Broad Institute, 2013. All rights reserved. The presentation above was filmed during the 2012 Proteomics Workshop, part of the BroadE Workshop series. The Proteomics Workshop provides a working knowledge of what proteomics is and how it can accelerate biologists' and clinicians' research. The focus of the workshop is on the most important technologies and experimental approaches used in modern mass spectrometry (MS)-based proteomics.
Views: 6835 Broad Institute
Content Analysis
 
07:39
Let's go on a journey and learn how to perform a content analysis!
Views: 91395 ChrisFlipp
Choosing a Statistical Test
 
12:32
In common health care research, some hypothesis tests are more common than others. How do you decide, between the common tests, which one is the right one for your research? Thank you to the Statistical Learning Center for their excellent video on the same topic. https://www.youtube.com/rulIUAN0U3w
Views: 328504 Erich Goldstein
What Does Coding Looks Like?: Qualitative Research Methods
 
04:43
You may be told that you need to "code" some qualitative data like interview transcripts, photos, or audio clips, but what does coding look like? We give you the basics. See our other modules on many related topics at Mod-U: https://modu.ssri.duke.edu
Basic Statistics & Quantitative Analysis I
 
55:06
This session will provide information regarding descriptive statistics that are often used when reviewing assessment data. We will cover the statistics available in the Baseline reporting site and we will use example situations to identify which statistics should be used to answer the questions being asked. We will also provide an overview regarding levels of measurement that can help determine what types of statistics you are able to run on your data. - See more at: http://www2.campuslabs.com/support/training/basic-statistics-quantitative-analysis-i-5/#sthash.FDO5HA6i.dpuf
Views: 34026 Campus Labs
Introduction to Quantitative Analysis
 
11:55
www.pinnacleadvisory.com --- Pinnacle Advisory Group's Quantitative Analyst Sauro Locatelli explains what he does and how it aids the investment process. This is the fifth presentation from our February 25 Inside the Investment Committee event. www.pinnacleadvisory.com
Views: 102421 Pinnacle Advisory Group

Typo in college admissions essay question
How to write a cover letter for a resume samples
Custom paper service term writing
Cover letter internship geophysics institute
Jack in the box jobs applications